Gli Scienziati stanno per Dimostrare che l’Universo dello Specchio esiste

Ammassi di Galassie/Clusters of Galaxies, Ammassi Stellari/Star Clusters, Ammasso di Galassie/Cluster of Galaxies, Ammasso Stellare/Star Cluster, Astrofisica/Astrophysics, Astronautica/Astronautics, Astronomi Gesuiti/Jesuit Astronomers, Astronomia/Astronomy, Buchi neri/Black holes, Buco Nero/Black Hole, Città del Vaticano/Vatican City, Collaborazione Specola Vaticana/Vatican Observatory Collaboration, Consorzio del Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (EHTC), Energia oscura/Dark energy, Fisica/Physics, Galassia/Galaxy, Galassie/Galaxies, Geologia/Geology, Grande Schieramento Millimetrico di Antenne Radio in Atacama/Atacama Large Millimeter Array (ALMA), Materia oscura/Dark matter, Oggetti Volanti Non Identificati (OVNI)/Unidentified Flying Objects (UFO), Osservatori Astronomici Australiani/Australian Astronomical Observatories, Osservatori Astronomici/Astronomical Observatories, Osservatorio Australe Europeo (ESO)/European Southern Observatory (ESO), Osservatorio di Antenne Radio di un Chilometro Quadrato/Square Kilometre Array Observatory (SKAO), Pianeti del Sistema Solare/Planets of the Solar System, Pianeti Extrasolari/Extrasolar Planets, Progetto SETI/SETI Project, Sonde Interplanetarie/Interplanetary Probes, Specola Vaticana/Vatican Observatory, Stella/Star, Stelle/Stars, Storia dell'Astrofisica/History of Astrophysics, Superammassi di Galassie/Superclusters of Galaxies, Superammasso di Galassie/Super-cluster of Galaxies, Telescopi Spaziali/Space Telescopes, Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope (EHT), Telescopio Sferico con Apertura di Cinquecento Metri/Five Hundred Meter Aperture Spherical Telescope (FAST), Telescopio Spaziale Hubble/Hubble Space Telescope, Telescopio Spaziale James Webb/James Webb Space Telescope, Unione Astronomica Internazionale/International Astronomical Union (IAU), Vita Extraterrestre/Extraterrestrial Life, Vita intelligente Extraterrestre/Extraterrestrial intelligent Life

IL LATO POSITIVO

Pubblicato il 27 lug 2019

La teoria degli universi multipli, o paralleli, offusca la linea tra realtà scientifica e fantascienza.
Oh sì, ed è un argomento di dibattito piuttosto vasto nella comunità scientifica, con grandi nomi da entrambe le parti.
Se credi nell’esistenza di universi multipli, allora ti farà sicuramente piacere sapere che hai dalla tua parte il grande Stephen Hawking! Ha una teoria piuttosto spettacolare sugli universi multipli.
Sì, l’idea è che tutto ciò che conosci: il nostro pianeta, il sistema solare, la nostra galassia, tutte le altre stelle e galassie là fuori che riescono a vedere i nostri telescopi; sono solo una parte minuscola di un puzzle inconcepibilmente gigante!

Segnalibri:
Che cosa è un “multiverso” 1:33
Ci sono infiniti me e ognuno è nel proprio universo 😱 3:02
Che aspetto hanno questi universi 3:39
Come sarebbe una versione parallela del nostro mondo? 4:45
Come si può dimostrare? 5:39
Come si può viaggiare in un altro universo? 8:27

#scienza #universo #latopositivo

SOMMARIO:

– Fino a pochi anni fa, gli scienziati erano sicuri che esistesse un solo universo che contenesse tutto ciò che è noto all’umanità, tra cui un unico universo.
– Questo è ora noto come teoria dei mondi multipli. (Sì, ci sono punti di vista diversi tra tutti i sostenitori del multiverso, e quello di Everett è solo uno dei tanti!) Quindi come funziona? Puoi immaginarlo come un diagramma di flusso che continua a ramificarsi.
– Alcuni credono che questi universi siano come delle bolle, totalmente invisibili l’una dall’altra perché, beh, non abbiamo una tale tecnologia! C’è anche il modello che mostra gli universi come dei fogli di carta impilati uno sopra l’altro.
– Quindi, come sarebbe una versione parallela del nostro mondo? Bene, alcuni attributi del nostro universo potrebbero essere diversi, mentre alcuni potrebbero essere uguali! Ad esempio, forse la versione parallela del nostro pianeta ha erba, alberi e uccelli che volano nel cielo e quant’altro.
– Comunque, prima di poter viaggiare in questi mondi, dobbiamo sapere che sono effettivamente reali. Dimostrare o smentire la loro esistenza non è un compito facile.
– L’idea è di far esplodere una manciata di particelle subatomiche attraverso un tunnel di 15 metri, oltrepassando un magnete, e sbattendo, alla fine, contro un muro. Se, dall’altra parte, alcune di quelle particelle escono come un’immagine speculare di sé stesse, ciò significherebbe che la scienza ha fatto una svolta di proporzioni galattiche!
– Alcuni scienziati ritengono che il Big Bang, che ha dato il via a tutto, potrebbe essere stato causato da due universi che si sono scontrati per formarne uno nuovo!
– Come è possibile viaggiare verso un nuovo universo? Naturalmente, stiamo parlando di fisica teorica, e ci sono molte teorie! Prima di tutto, ci sono gli wormhole!
– E, beh, c’è sempre la teoria di Stephen Hawking su come viaggiare in un altro universo: tutto ciò che devi fare è saltare in un buco nero!

Musica di Epidemic Sound
https://www.epidemicsound.com/

Materiali usato (foto, filmati e altro):
https://www.depositphotos.com
https://www.shutterstock.com
https://www.eastnews.ru

Iscriviti a “Il Lato Positivo”:
https://goo.gl/LRxYHU
Iscriviti a 5 MINUTI CREATIVI:
https://goo.gl/TXK8uY
Iscriviti a ENIGMI DI 7 SECONDI
https://bit.ly/2wevtol

Categoria
Persone e blog
Annunci

Quanto Lontano Potremo Spingerci Nel Cosmo?

Ammassi di Galassie/Clusters of Galaxies, Ammassi Stellari/Star Clusters, Ammasso di Galassie/Cluster of Galaxies, Ammasso Stellare/Star Cluster, Astrofisica/Astrophysics, Astronautica/Astronautics, Astronomi Gesuiti/Jesuit Astronomers, Astronomia/Astronomy, Buchi neri/Black holes, Buco Nero/Black Hole, Città del Vaticano/Vatican City, Collaborazione Specola Vaticana/Vatican Observatory Collaboration, Consorzio del Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (EHTC), Energia oscura/Dark energy, Fisica/Physics, Galassia/Galaxy, Galassie/Galaxies, Geologia/Geology, Grande Schieramento Millimetrico di Antenne Radio in Atacama/Atacama Large Millimeter Array (ALMA), Materia oscura/Dark matter, Oggetti Volanti Non Identificati (OVNI)/Unidentified Flying Objects (UFO), Osservatori Astronomici Australiani/Australian Astronomical Observatories, Osservatori Astronomici/Astronomical Observatories, Osservatorio Australe Europeo (ESO)/European Southern Observatory (ESO), Osservatorio di Antenne Radio di un Chilometro Quadrato/Square Kilometre Array Observatory (SKAO), Pianeti del Sistema Solare/Planets of the Solar System, Pianeti Extrasolari/Extrasolar Planets, Progetto SETI/SETI Project, Sonde Interplanetarie/Interplanetary Probes, Specola Vaticana/Vatican Observatory, Stella/Star, Stelle/Stars, Storia dell'Astrofisica/History of Astrophysics, Superammassi di Galassie/Superclusters of Galaxies, Superammasso di Galassie/Super-cluster of Galaxies, Telescopi Spaziali/Space Telescopes, Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope (EHT), Telescopio Sferico con Apertura di Cinquecento Metri/Five Hundred Meter Aperture Spherical Telescope (FAST), Telescopio Spaziale Hubble/Hubble Space Telescope, Telescopio Spaziale James Webb/James Webb Space Telescope, Unione Astronomica Internazionale/International Astronomical Union (IAU), Vita Extraterrestre/Extraterrestrial Life, Vita intelligente Extraterrestre/Extraterrestrial intelligent Life
IL LATO POSITIVO
Pubblicato il 5 lug 2019

La nostra mappa del mondo era finalmente completa intorno al 1820, con la scoperta dell’Antartide.
Ma perché fermarsi ai confini del mondo?
E la luna allora?
E più in là ancora, fino a dove?
Malgrado i nostri grandi progressi, per millenni la curiosità umana è stata costretta ad accontentarsi dei limiti della Terra.
Ma tutto cambiò il 12 Aprile 1961, il giorno in cui il primo essere umano si spinse oltre il nostro pianeta.
Il cosmonauta russo Yuri Gagarin, il primo uomo nello spazio.
Gagarin orbitò sopra la Terra per un totale di 108 minuti.

SOMMARIO:

– Nel 1969, la missione Apollo 11 portò due uomini a posare i piedi sulla Luna.
– Nell’aprile 1970, l’equipaggio della missione NASA Apollo 13 circumnavigò la luna spingendosi fino al suo lato nascosto, osservandola da un’altezza di 254 km, e ad una distanza di oltre 400.000 km dalla Terra.
– Tutto cominciò quando gli astronomi si accorsero che alcune stelle erano meno splendenti di altre.
– Henrietta Swan Leavitt studiò migliaia di stelle variabili, ovvero le stelle che, viste dalla Terra, presentano fluttuazioni di luminosità.
– Più o meno nello stesso periodo venne installato il telescopio Hooker nell’osservatorio di Mount Wilson, in California. È stato il telescopio più grande del mondo dal 1917 al 1949.
– La galassia più lontana mai osservata è la EGS-zs8-1. Si trova a ben 13,1 miliardi di anni-luce da noi.
– Nessuno sa con certezza cosa c’è nei punti più lontani da noi, o quanto grande sia davvero l’universo. C’è chi dice che l’universo sia infinito, mentre altri propongono la teoria del multiverso.

#fattisullospazio #illatopositivo #galassia

Musica di Epidemic Sound
https://www.epidemicsound.com/

Materiali usato (foto, filmati e altro):
https://www.depositphotos.com
https://www.shutterstock.com
https://www.eastnews.ru

Iscriviti a “Il Lato Positivo”:
https://goo.gl/LRxYHU
Iscriviti a 5 MINUTI CREATIVI:
https://goo.gl/TXK8uY
Iscriviti a ENIGMI DI 7 SECONDI
https://bit.ly/2wevtol

Categoria
Persone e blog



Gli Astronomi hanno Scoperto un Pianeta Proibito e Sanno il Perché della sua Esistenza

Ammassi di Galassie/Clusters of Galaxies, Ammassi Stellari/Star Clusters, Ammasso di Galassie/Cluster of Galaxies, Ammasso Stellare/Star Cluster, Astrofisica/Astrophysics, Astronautica/Astronautics, Astronomi Gesuiti/Jesuit Astronomers, Astronomia/Astronomy, Buchi neri/Black holes, Buco Nero/Black Hole, Città del Vaticano/Vatican City, Collaborazione Specola Vaticana/Vatican Observatory Collaboration, Consorzio del Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (EHTC), Energia oscura/Dark energy, Fisica/Physics, Galassia/Galaxy, Galassie/Galaxies, Geologia/Geology, Grande Schieramento Millimetrico di Antenne Radio in Atacama/Atacama Large Millimeter Array (ALMA), Materia oscura/Dark matter, Oggetti Volanti Non Identificati (OVNI)/Unidentified Flying Objects (UFO), Osservatori Astronomici Australiani/Australian Astronomical Observatories, Osservatori Astronomici/Astronomical Observatories, Osservatorio Australe Europeo (ESO)/European Southern Observatory (ESO), Osservatorio di Antenne Radio di un Chilometro Quadrato/Square Kilometre Array Observatory (SKAO), Pianeti del Sistema Solare/Planets of the Solar System, Pianeti Extrasolari/Extrasolar Planets, Progetto SETI/SETI Project, Sonde Interplanetarie/Interplanetary Probes, Specola Vaticana/Vatican Observatory, Stella/Star, Stelle/Stars, Storia dell'Astrofisica/History of Astrophysics, Superammassi di Galassie/Superclusters of Galaxies, Superammasso di Galassie/Super-cluster of Galaxies, Telescopi Spaziali/Space Telescopes, Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope (EHT), Telescopio Sferico con Apertura di Cinquecento Metri/Five Hundred Meter Aperture Spherical Telescope (FAST), Telescopio Spaziale Hubble/Hubble Space Telescope, Telescopio Spaziale James Webb/James Webb Space Telescope, Unione Astronomica Internazionale/International Astronomical Union (IAU), Vita Extraterrestre/Extraterrestrial Life, Vita intelligente Extraterrestre/Extraterrestrial intelligent Life
IL LATO POSITIVO
Pubblicato il 1 lug 2019

Secondo gli astronomi, pianeti delle dimensioni di Nettuno non sono in grado di formare e sostenere alcun tipo di atmosfera mentre orbitano attorno e in prossimità delle stelle madri.
Beh, dimenticati di ciò che ho appena detto, anche perché non ho capito molto.
Ma l’anno scorso, gli astronomi hanno trovato questo tipo di pianeta!
E non è l’unico pianeta che sfida tutte le nostre convinzioni.
Gli esopianeti sono il tema più caldo in astronomia, e con ogni nuova scoperta, abbiamo un’idea più chiara dell’universo in cui viviamo.
Ma alcune di queste scoperte lasciano tutti sbigottiti.
Gli scienziati dovranno riconsiderare l’idea che si erano fatti dell’Universo?
Scopriamolo!

Segnalibri:
Cosa c’è di così speciale in questo pianeta? 0:55
Uno strano gigante gassoso 2:46
Quando un anno dura solo 8,5 ore 3:52
Il pianeta “Bob” (orbita intorno a una stella binaria!) 5:31
Plutone non è un pianeta?! 6:56
Il pianeta X nel sistema solare 8:03

#spazio #pianeti #latopositivo

Musica di Epidemic Sound https://www.epidemicsound.com/

Materiali usati (foto, filmati e altro):
https://www.depositphotos.com
https://www.shutterstock.com
https://www.eastnews.ru

SOMMARIO:
– NGTS-4b è, almeno per ora, l’unico pianeta noto di dimensioni sub-nettuniani che orbita intorno alla sua stella in un cosiddetto “deserto nettuniano”.
– Questo pianeta ha ancora un’atmosfera, e ha l’80% delle dimensioni di Nettuno. Orbita attorno alla stella a una velocità sorprendente: una rotazione completa in 1,3 giorni.
– Il 31 ottobre, 2017, il pianeta NGTS-1b è stato scoperto. Ma la cosa strana di questo pianeta è che orbita attorno a una stella nana rossa che è grande solo la metà del nostro Sole. Questo non è mai stato visto prima, e in teoria, pianeti cosi grandi non dovrebbero orbitare attorno a stelle così piccole.
– Kepler-78b è il nome del pianeta. Presumibilmente, è denso come la Terra e ha una composizione simile, ma è ancora più vicino alla sua stella rispetto a NGTS-4b. Un anno su questo pianeta dura solo 8,5 ore.
– Per quanto ne sappiamo, non c’è nessuna spiegazione per cui un pianeta come Kepler- 78b si sia formato così vicino a una stella, e non c’è nemmeno una spiegazione per cui ha migrato così vicino senza schiantarsi contro la stella.
– Parliamo di un pianeta che è così lontano dalla sua stella, che non dovrebbe esistere. Il pianeta di cui sto parlando è, preparati perché sarà una bella botta, HD 106906 b. Per semplicità, chiamiamolo ” Bob “.
– Il pianeta è 11 volte più massiccio di Giove e orbita intorno a una stella binaria a una distanza inimmaginabile.
– C’è un una grande collezione di asteroidi, ghiaccio, e polvere, chiamata la fascia di Kuiper. Qui sono stati scoperti altri oggetti, alcuni grandi come Plutone. – Le prove trovate nel 2016 dagli astronomi Gongjie Li e Fred Adams, suggeriscono che, in realtà, esiste uno strano “pianeta X” nel sistema solare. Solo che è molto più distante da Plutone e dalla fascia di Kuiper.
– La spiegazione più probabile per la distanza del non pianeta è che un tempo era un gigante gassoso, come Giove, ma non poteva competere, e le forze gravitazionali di altri pianeti lo hanno spinto più lontano.

Iscriviti a “Il Lato Positivo”:
https://goo.gl/LRxYHU

Iscriviti a 5 MINUTI CREATIVI:
https://goo.gl/TXK8uY

Iscriviti a ENIGMI DI 7 SECONDI
https://bit.ly/2wevtol

Categoria
Persone e blog

Un secolo di relatività… sperimentale!

Ammassi di Galassie/Clusters of Galaxies, Ammassi Stellari/Star Clusters, Ammasso di Galassie/Cluster of Galaxies, Ammasso Stellare/Star Cluster, Astrofisica/Astrophysics, Astronomia/Astronomy, Buchi neri/Black holes, Buco Nero/Black Hole, Consorzio del Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (EHTC), Consorzio del Telescopio dell'Orizzonte degli Eventi/Telescope Consortium of the Events Horizon (EHTC), Consorzio Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (Ehtc), Energia oscura/Dark energy, Fisica/Physics, Galassia/Galaxy, Galassie/Galaxies, Grande Schieramento Millimetrico di Antenne Radio in Atacama/Atacama Large Millimeter Array (ALMA), Materia oscura/Dark matter, Osservatori Astronomici Australiani/Australian Astronomical Observatories, Osservatori Astronomici/Astronomical Observatories, Osservatorio Australe Europeo (ESO)/European Southern Observatory (ESO), Osservatorio del Sud Europeo (ESO)/European Southern Observatory (ESO), Osservatorio di Antenne Radio di un Chilometro Quadrato/Square Kilometre Array Observatory (SKAO), Osservatorio Europeo Australe (ESO)/European Southern Observatory (ESO), Osservatorio Europeo del Sud (ESO)/European Southern Observatory (ESO), Pianeti del Sistema Solare/Planets of the Solar System, Pianeti Extrasolari/Extrasolar Planets, Specola Vaticana/Vatican Observatory, Stella/Star, Stelle/Stars, Storia dell'Astrofisica/History of Astrophysics, Superammassi di Galassie/Superclusters of Galaxies, Superammasso di Galassie/Super-cluster of Galaxies, Telescopi Spaziali/Space Telescopes, Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope (EHT), Telescopio dell'Orizzonte degli Eventi/Telescope of the Events Horizon (EHT), Telescopio Sferico con Apertura di Cinquecento Metri/Five Hundred Meter Aperture Spherical Telescope (FAST), Telescopio Spaziale Hubble/Hubble Space Telescope, Telescopio Spaziale James Webb/James Webb Space Telescope, Unione Astronomica Internazionale/International Astronomical Union (IAU)

29 maggio 2019

di Emiliano Ricci

Composizione digitale di 22 immagini dell’eclissi di Sole dell’11 agosto 1999 (Science Photo Library / AGF) 

Il 29 maggio 1919 la teoria generale della relatività di Albert Einstein ottenne la sua prima conferma sperimentale grazie a un’eclissi totale di SoleLa guerra, si sa, non rende mai agevoli le comunicazioni, soprattutto se ci si trova su fronti contrapposti, a combattere gli uni contro gli altri. E nel 1915, anno in cui il tedesco Albert Einstein presentò all’Accademia prussiana delle scienze la sua teoria della relatività generale, l’Impero tedesco e l’Impero britannico (come si chiamavano allora) erano impegnati – assieme a gran parte dei paesi europei – nel tentativo di annientarsi reciprocamente, piuttosto che a scambiarsi informazioni scientifiche. Pubblicata in tedesco, su una rivista tedesca, la nuova teoria della gravità non trovò inizialmente una grande diffusione, né fra gli scienziati né, tantomeno, fra il pubblico.

Fortuna volle che i Paesi Bassi, durante un conflitto che stava devastando l’intero continente, fossero rimasti neutrali. All’epoca, all’Università di Leida, prestigiosa istituzione olandese, era professore un certo Willem de Sitter, matematico e fisico, diventato più tardi noto per i suoi studi di cosmologia (proprio grazie all’applicazione della teoria della relatività generale). Arrivatagli notizia della teoria di Einstein, de Sitter – scienziato illuminato – ne comprese presto l’importanza e decise di divulgarne i contenuti principali scrivendo alcuni articoli in lingua inglese.

Fu proprio grazie a questo passaggio in una terra neutrale che la teoria della relatività poté varcare il canale della Manica e arrivare in Inghilterra, dove trovò subito un sostenitore entusiasta: l’astrofisico Arthur Stanley Eddington, già titolare delle cattedre di astronomia teorica e sperimentale a Cambridge. È curioso pensare che Eddington iniziò ad apprezzare il lavoro di Einstein, ancora prima che per la rilevanza in fisica, per l’eleganza dell’elaborazione matematica. Fatto è che, grazie a questa sua immediata attenzione nei confronti della nuova teoria della gravità, quest’ultima trovò modo di diffondersi anche nei paesi anglosassoni, in particolare proprio per un celebre articolo scritto da Eddington stesso, dal titolo Report on the Relativity Theory of Gravitation, pubblicato nel 1920 dalla Physical Society of London.

Sir Arthur Stanley Eddington (1882-1944)

Eddington, a quel punto, non era più solo affascinato dalla “bellezza matematica” della teoria di Einstein, ma aveva potuto saggiarla sul campo, mettendola direttamente alla prova dei fatti. L’anno prima, quindi nel 1919, era riuscito a farsi finanziare dalla Royal Society e dalla Royal Astronomical Society una costosa missione scientifica volta proprio a dimostrare per la prima volta sperimentalmente la validità della teoria di Einstein. A convincere le due prestigiose istituzioni britanniche fu ancora uno scritto di Eddington, che nel 1918 – a guerra ancora in corso, quindi in condizioni di grande difficoltà anche economica del paese, impegnato nello sforzo bellico – arrivò a tessere le lodi di una teoria formulata da un tedesco (quindi tecnicamente un nemico) scrivendo una relazione per diffonderla fra i suoi colleghi britannici ed esaltando proprio la bellezza della “potenza insita nel ragionamento matematico”, come scrisse nella prefazione.

E siamo quindi al 1919, il 29 maggio, per la precisione. Un secolo fa esatto. La missione scientifica richiesta da Eddington riguardava l’osservazione dell’eclissi totale di Sole che si verificò proprio in quella data. Lo scopo dichiarato era effettuare misurazioni che avrebbero permesso di valutare le previsioni della teoria di Einstein relativamente alla deflessione dei raggi di luce a opera del campo gravitazionale. L’idea era misurare le posizioni apparenti di alcune stelle di sfondo in prossimità del disco solare occultato dalla Luna e di confrontarle con le rispettive posizioni assunte a distanza di alcuni mesi, quando quelle stesse stelle si trovano angolarmente più distanti dal Sole e possono pertanto essere osservate di notte. Quell’eclissi si verificava in condizioni particolarmente favorevoli da questo punto di vista: il campo stellare da osservare era quello dell’ammasso delle Iadi, nella costellazione del Toro, composto da stelle piuttosto luminose e facilmente riconoscibili.

Per inciso, la deflessione della luce è anche all’origine del fenomeno delle lenti gravitazionali: quando lungo la linea di vista fra noi e una sorgente lontana si trova una galassia o anche un ammasso di galassie, la luce della sorgente lontana viene deflessa più o meno intensamente proprio a causa della presenza di quella grande massa. Il risultato è che la sorgente lontana (un quasar, una galassia e così via) viene osservata deformata e talvolta addirittura moltiplicata. La lente gravitazionale – appunto la massa della galassia o dell’ammasso di galassie lungo la linea di vista – può deflettere in maniera diversa la luce a seconda della distribuzione della sua massa, potendo produrre anche immagini multiple della stessa sorgente lontana.

Ma torniamo a Eddington e alla “sua” eclissi. Per tutelarsi da eventuali problemi logistici, meteorologici e altro, furono organizzate due spedizioni scientifiche, naturalmente in due località toccate dalla fascia di totalità dell’eclissi, che avrebbe attraversato l’Oceano Atlantico, dal Brasile all’Africa occidentale. Sotto il coordinamento complessivo di Eddington, la prima spedizione, guidata dall’astronomo Andrew Crommelin, dell’Osservatorio di Greenwich, ebbe come destinazione Sobral, nel nord del Brasile, l’altra l’isola Príncipe, al largo delle coste africane della Guinea, guidata dallo stesso Eddington. E, a posteriori, bisogna dire che l’idea di organizzare due spedizioni fu vincente. Le osservazioni di Eddington furono di bassa qualità, prevalentemente per motivi meteo, mentre da Sobral il gruppo di Crommelin osservò l’eclissi in condizioni ottimali.

Le misurazioni sulle lastre raccolte da più strumenti, rese difficoltose non solo dalla qualità delle immagini, che mostravano poche stelle riconoscibili, ma anche dall’entità della deflessione (inferiore a 2 secondi d’arco), portarono a risultati incerti affetti da errori piuttosto rilevanti, ma comunque compatibili con le previsioni di Einstein. E in ogni caso Eddington non si fece frenare dall’incoerenza di alcuni numeri: la conclusione delle necessarie elaborazioni fu che la teoria generale della relatività era confermata (e, verrebbe da dire, non poteva essere altrimenti).

L’annuncio che la teoria di Einstein aveva ricevuto la prima conferma sperimentale, dato il 6 novembre dello stesso anno nel corso di una riunione congiunta dei due enti finanziatori, Royal Society e Royal Astronomical Society, ebbe immediata e ampia eco non solo nella comunità scientifica, ma anche su quotidiani e riviste sia britanniche sia statunitensi, consegnando definitivamente l’ex oscuro impiegato dell’Ufficio brevetti di Berna alla fama mondiale.

Fu così che, nonostante le ampie e giustificate critiche portate da molti fisici di rilievo alle misurazioni realizzate da Eddington e collaboratori, la relatività generale prese il volo. Un successo più che meritato, certo, anche perché quella nuova e rivoluzionaria teoria della gravità, dopo quella prima verifica, è stata sottoposta a numerose altre verifiche sperimentali che hanno – almeno fino a oggi – confermato la sua validità, ma che, almeno in quel momento, fece affidamento più sul grande entusiasmo di Eddington nei confronti della teoria che sulla reale affidabilità dei dati raccolti durante quell’eclissi di un secolo fa.

Un ponte di segnali radio nello spazio intergalattico

Ammassi di Galassie/Clusters of Galaxies, Ammasso di Galassie/Cluster of Galaxies, Astrofisica/Astrophysics, Astronomia/Astronomy, Buchi neri/Black holes, Buco Nero/Black Hole, Consorzio del Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (EHTC), Consorzio del Telescopio dell'Orizzonte degli Eventi/Telescope Consortium of the Events Horizon (EHTC), Event Horizon Telescope (EHT), Event Horizon Telescope Consortium (EHTC), Fisica/Physics, Galassia/Galaxy, Galassie/Galaxies, Grande Schieramento Millimetrico di Antenne Radio in Atacama/Atacama Large Millimeter Array (ALMA), Osservatori Astronomici/Astronomical Observatories, Superammassi di Galassie/Superclusters of Galaxies, Superammasso di Galassie/Super-cluster of Galaxies, Telescopi Spaziali/Space Telescopes, Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope (EHT), Telescopio dell'Orizzonte degli Eventi/Telescope of the Events Horizon (EHT)

07 giugno 2019

Una ricerca internazionale coordinata dall’Istituto nazionale di astrofisica (INAF) ha rilevato per la prima volta un’emissione radio da un filamento che unisce due ammassi di galassie in fase di fusione

In questo articolo parliamo di:

Nell’universo considerato alla scala più ampia, la materia non è distribuita uniformemente. Occupa una vasta struttura chiamata rangnatela cosmica (cosmic web) formata da tenui filamenti di gas. E dove i filamenti s’intersecano sono presenti gli ammassi di galassie, le più ampie strutture legate gravitazionalmente dell’universo, che contengono di tutto: da centinaia o migliaia di galassie a enormi quantità di altro gas e materia oscura.

Ora, per la prima volta, le osservazioni hanno dimostrato che questi filamenti, rarefatti e per questo difficili da osservare, sono pervasi da campi elettrici e magnetici, segnalati da un’emissione radio a bassa frequenza. Lo annuncia su “Science” un gruppo internazionale di ricercatori, coordinati da  Federica Govoni dell’Istituto Nazionale di Astrofisica (INAF) di Cagliari e colleghi dipartimento di Fisica e Astronomia dell’Università di Bologna e della Scuola Normale Superiore di Pisa.

Il risultato è arrivato grazie al radiotelescopio Low-Frequency Array (LOFAR), progettato espressamente per scrutare il cielo alle basse frequenze radio (tra 10 e 240 MHz). Lo strumento è stato puntato verso la regione di spazio che separa Abell 0399 e Abell 0401, due ammassi di galassie distanti da noi circa un miliardo di anni luce, in procinto di fondersi. La scelta è caduta su questi due ammassi perché una precedente ricerca di Govoni e colleghi aveva mostrato che entrambi hanno un alone di emissione radio, indicativo della presenza di un campo magnetico, amplificato probabilmente dal processo di inglobamento e fusione di strutture più piccole.

Immagine composita degli ammassi di galassie Abell 0399 e Abel 0401. Il sistema si trova a circa un miliardo di anni luce dalla Terra, mentre i due ammassi distano tra loro circa 10 milioni di anni luce, in proiezione. I nuclei dei due ammassi sono permeati da plasma ad alte temperature, che emette raggi X (in rosso). L’immagine nelle onde radio a bassa frequenza (in blu) rivela diverse sorgenti discrete associate a singole galassie e due diffusi aloni nei centri dei due ammassi. Un ponte di emissioni radio è visibile lungo i filamenti che collegano Abell 0399 e Abel 0401, rivelando la presenza di un vasto campo magnetico illuminato da una popolazione di elettroni ad alta energia (DSS e Pan-STARRS1 (ottico), XMM-Newton(raggi X), PLANCK satellite (parametro y), F.Govoni, M.Murgia, INAF)

“Più di recente il satellite Planck ha mostrato che i due sistemi sono connessi da un tenue filamento di materia: la presenza di questo filamento ha stimolato la nostra curiosità e ci ha spinti ad investigare se il campo magnetico potesse estendersi anche oltre il centro degli ammassi, permeando il filamento di materia che li connette”, ha commentato Govoni. “Con grande soddisfazione, l’immagine ottenuta con il radiotelescopio LOFAR ha confermato questa nostra intuizione, mostrando quella che può essere definita una sorta di ‘aurora’ su scale cosmiche”.

Le ipotesi degi autori sul possibile fenomeno all’origine del segnale radio puntano al meccanismo di sincrotrone: a produrlo sono gli elettroni che si muovono all’interno di un campo magnetico a velocità prossime alla velocità della luce. Questa conclusione sembra la più logica, ma costringe a rivedere almeno in parte il modello dei processi astrofisici che coinvolgono gli elettroni.

““Tipicamente osserviamo questo meccanismo di emissione in azione in singole galassie e persino in ammassidi galassie, ma mai fino ad ora era stata osservata una emissione radio connettere due di questi sistemi“, ha concluso Matteo Murgia primo ricercatore INAF. “Comprendere la natura di questa sorgente radio è una vera e propria sfida visto che gli elettroni, durante il loro tempo di vita radiativo, riescono a percorrere un tratto di spazio molto minore dell’estensione dell’intera sorgente. Deve quindi esistere un qualche meccanismo responsabile della loro accelerazione che opera lungo tutto il filamento”. (red)

Il collasso diretto dei buchi neri supermassicci

Ammassi di Galassie/Clusters of Galaxies, Ammasso di Galassie/Cluster of Galaxies, Astrofisica/Astrophysics, Astronomia/Astronomy, Buco Nero/Black Hole, Consorzio del Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (EHTC), Consorzio del Telescopio dell'Orizzonte degli Eventi/Telescope Consortium of the Events Horizon (EHTC), Event Horizon Telescope (EHT), Event Horizon Telescope Consortium (EHTC), Galassia/Galaxy, Galassie/Galaxies, Intelligenza Artificiale/Artificial Intelligence, Osservatori Astronomici/Astronomical Observatories, Superammassi di Galassie/Superclusters of Galaxies, Superammasso di Galassie/Super-cluster of Galaxies, Telescopi Spaziali/Space Telescopes, Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope (EHT), Telescopio dell'Orizzonte degli Eventi/Telescope of the Events Horizon (EHT)

02 luglio 2019

(Scott Woods, Western University) 

Questi oggetti estremi del cosmo erano presenti già nell’epoca primordiale dell’universo: per spiegarne l’origine, un nuovo modello prevede che si siano formati con un processo molto rapido, e non dal collasso di stelle

In questo articolo parliamo di:

Non c’è bisogno di una stella che collassa per avere un buco nero supermassiccio. E questo spiega perché questo tipo di oggetti potevano essere presenti anche nell’epoca primordiale dell’universo. Lo afferma un nuovo studio pubblicato sulle “Astrophysical Journal Letters” da Shantanu Basu e Arpan Das della University of Western Ontario, in Canada.

I buchi neri supermassicci sono una tipologia di buchi neri caratterizzata da una massa molto elevata, che arriva a milioni o miliardi di volte la massa del Sole. Malgrado le loro caratteristiche estreme però non sono oggetti rari: si stima che ogni galassia o quasi ospiti nel proprio nucleo un buco nero supermassiccio.

Sulla loro origine non c’è accordo tra gli astrofisici. Una prima ipotesi è che derivino dall’accrescimento di buchi neri di dimensioni normali, che a loro volta sono l’esito ultimo del collasso di stelle giunte al termine del loro ciclo vitale. Quando infatti le reazioni di fusione nucleare all’interno della stella hanno trasformato quasi tutto l’idrogeno in elio, la pressione di radiazione verso l’esterno non è più in grado di contrastare la forza gravitazionale che agisce in senso opposto, e tutta la massa tende a concentrarsi nel nucleo.

Altre ipotesi prevedono invece che i buchi neri supermassicci si formino in seguito al collasso di particolari tipologie di stelle o di ammassi stellari.

Nell’ultimo decennio il panorama delle conoscenze su questo argomento si è arricchito di numerose osservazioni di buchi neri supermassicci estremamente lontani, che ci appaiono quindi com’erano poche centinaia di milioni di anni dopo l’origine dell’universo. Ciò depone a favore di una formazione molto rapida e diretta di questi oggetti.

Tenuto conto di questi dati, Basu e Das propongono ora nuovo modello di formazione dei buchi neri supermassicci basato su un’idea di base molto semplice: la loro origine è un collasso molto rapido.

“I buchi neri supermassicci hanno avuto solo un periodo di tempo breve per formarsi e crescere, e a un certo punto la loro produzione nell’universo è cessata”, ha spiegato Basu. “È questo lo scenario del collasso diretto”.

Le simulazioni al computer dei due autori mostrano che le osservazioni e i dati sperimentali dei buchi neri supermassicci già presenti in un’epoca primordiale dell’universo sono compatibili con un accrescimento esponenziale del buco nero, che inizia la sua vita con una massa compresa tra 10.000 e 100.000 masse solari. (red)

Quel disco che non t’aspetti attorno al buco nero

Ammassi di Galassie/Clusters of Galaxies, Ammasso di Galassie/Cluster of Galaxies, Astrofisica/Astrophysics, Astronomia/Astronomy, Buco Nero/Black Hole, Consorzio del Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (EHTC), Consorzio del Telescopio dell'Orizzonte degli Eventi/Telescope Consortium of the Events Horizon (EHTC), Event Horizon Telescope (EHT), Event Horizon Telescope Consortium (EHTC), Galassia/Galaxy, Galassie/Galaxies, Osservatori Astronomici/Astronomical Observatories, Superammassi di Galassie/Superclusters of Galaxies, Superammasso di Galassie/Super-cluster of Galaxies, Telescopi Spaziali/Space Telescopes, Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope (EHT), Telescopio dell'Orizzonte degli Eventi/Telescope of the Events Horizon (EHT), Telescopio Spaziale Hubble/Hubble Space Telescope, Telescopio Spaziale James Webb/James Webb Space Telescope

11 luglio 2019

Comunicato stampa

Fonte: Inaf/Asi

Rappresentazione artistica del tenue disco di materia attorno al buco nero supermassiccio al centro della galassia NGC 3147 Crediti: ESA/Hubble/M. Kornmesser 

Un tenue disco di materia attorno al buco nero supermassiccio della galassia Ngc 3147 è stato scoperto da Stefano Bianchi della Università Roma Tre insieme, tra gli altri, a colleghi dell’Istituto Nazionale di Astrofisica e dell’Agenzia Spaziale Italiana, grazie alle osservazioni del telescopio spaziale Hubble

In questo articolo parliamo di:

Un tenue disco di materia è stato individuato dove non avrebbe dovuto esserci, ovvero attorno al buco nero supermassiccio nel centro della poco luminosa galassia NGC 3147, distante 130 milioni di anni luce da noi. A scoprirlo è stato un team internazionale di ricercatori guidato da Stefano Bianchi, dell’Università degli Studi Roma Tre e a cui hanno partecipato anche colleghe e colleghi dell’Istituto Nazionale di Astrofisica (INAF) e dell’Agenzia Spaziale Italiana (ASI), grazie alle riprese del telescopio spaziale Hubble di NASA ed ESA. Il lavoro che descrive la scoperta viene pubblicato oggi sulla rivista Monthly Notices of the Royal Astronomical Society.

La scoperta di un disco di materia attorno al buco nero centrale di una galassia a bassa luminosità come NGC 3147 ha sorpreso gli astronomi. I buchi neri in certi tipi di galassie come NGC 3147 sono infatti considerati “affamati”, in quanto attorno a loro non vi è sufficiente materiale catturato gravitazionalmente che possano ingurgitare e grazie al quale sono in grado di emettere enormi quantità di energia, sotto forma di getti e radiazione elettromagnetica, come la luce, ma anche più energetica, fino ai raggi X e gamma. La tenue struttura individuata nel cuore della galassia NGC 3147, che può essere considerata a tutti gli effetti una copia sbiadita dei luminosi dischi attorno ai buchi neri centrali delle galassie attive, è una novità assoluta per chi studia questi oggetti celesti estremi.

“Questo è il primo, affascinante sguardo che abbiamo ottenuto di un disco così debole, tanto vicino al buco nero che le velocità della materia che lo compone e l’eccezionale forza di attrazione gravitazionale del buco nero che orbita influenzano notevolmente il modo in cui vediamo la luce emessa da questo sistema finora unico nel suo genere” dice Stefano Bianchi, che è anche ricercatore associato all’INAF.

Osservare e misurare gli effetti estremi legati all’interazione tra materia, radiazione elettromagnetica e gravità nel cuore di NGC 3147 è di estremo interesse per testare le teorie della relatività di Albert Einstein, come conferma Marco Chiaberge, In forza all’STScI e alla Johns Hopkins University, anche lui nel team che ha realizzato la scoperta: “non avevamo mai visto gli effetti della Relatività generale e speciale sulla luce visibile con un’accuratezza simile”.

I dati raccolti dallo strumento STIS (Space Telescope Imaging Spectrograph) di Hubble hanno permesso di raccogliere preziose informazioni sulla velocità con cui ruota la materia del disco attorno al buco nero, pari a oltre il 10 per cento di quella della luce. Con questi valori così estremi, il gas sembra risultare più brillante mentre si sposta verso la Terra e al contrario perde luminosità mentre si allontana da noi. Questo effetto è noto come Doppler boosting o relativistic beaming. Le osservazioni di Hubble mostrano inoltre che la materia del disco è così profondamente dominata dalla forza di gravità del buco nero, la cui massa stimata è di 250 milioni di volte quella del Sole, che anche la luce prodotta dal gas che lo compone fa fatica a sfuggirgli, e ci arriva con lunghezze d’onda grandi e ci appare più arrossata. “Grazie agli effetti di distorsione della luce proveniente dal disco di gas siamo riusciti a misurare la sua distanza dal buco nero, che corrisponde a 30 miliardi di km, pari a circa 6 volte la distanza tra il Sole e Nettuno” aggiunge Andrea Marinucci, ricercatore dell’ASI, che ha partecipato allo studio.

Il team ha deciso di studiare in dettaglio il cuore della galassia NGC 3147 proprio per verificare gli attuali modelli teorici che descrivono le proprietà delle galassie attive con bassa luminosità, ovvero quelle che ospitano nel loro centro buchi neri di grande massa ma “affamati”. Questi modelli suggeriscono che i dischi di materiale dovrebbero formarsi quando grandi quantità di gas vengono catturate dalla formidabile attrazione gravitazionale prodotta da un buco nero supermassiccio, emettendo così una enorme quantità di luce, come un potentissimo faro: quello che gli astronomi chiamano quasar.

“Il tipo di disco che vediamo è un quasar ridimensionato che non ci aspettavamo potesse esistere”, sottolinea Alessandro Capetti dell’INAF a Torino, anch’egli nel team di Bianchi. “È lo stesso tipo di disco che vediamo negli oggetti che sono 1000 o anche 100.000 volte più luminosi. È quindi evidente che le previsioni degli attuali modelli per galassie attive molto deboli in questo caso falliscono”.

La scoperta viene pubblicata oggi sulla rivista “Monthly Notices of the Royal Astronomical Society” nell’articolo HST unveils a compact mildly relativistic Broad Line Region in the candidate true type 2 NGC 3147 di Stefano Bianchi, Robert Antonucci, Alessandro Capetti, Marco Chiaberge, Ari Laor, Loredana Bassani, Francisco J. Carrera, Fabio La Franca, Andrea Marinucci, Giorgio Matt, Riccardo Middei, Francesca Panessa

Futuro24: captare le onde radio per svelare i misteri dell’Universo

Astrofisica/Astrophysics, Astronomi Gesuiti/Jesuit Astronomers, Brother Guy Joseph Consolmagno SJ, Città del Vaticano/Vatican City, Collaborazione Specola Vaticana/Vatican Observatory Collaboration, Compagnia di Gesù/Society of Jesus, Consorzio del Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (EHTC), Father David Brown SJ, Father Gabriele Gionti SJ, Father George V. Coyne SJ - Director of the Vatican Observatory (1978 - 2006), Father Josè Gabriel Funes SJ, Fisica/Physics, Fratello Guy Joseph Consolmagno SJ, Geologia/Geology, Gesuiti/Jesuits, Grande Schieramento Millimetrico di Antenne Radio in Atacama/Atacama Large Millimeter Array (ALMA), Intelligenza Artificiale/Artificial Intelligence, Matematica/Mathematics, Oggetti Volanti Non Identificati (OVNI)/Unidentified Flying Objects (UFO), Osservatori Astronomici Australiani/Australian Astronomical Observatories, Osservatori Astronomici/Astronomical Observatories, Osservatorio Australe Europeo (ESO)/European Southern Observatory (ESO), Osservatorio di Antenne Radio di un Chilometro Quadrato/Square Kilometre Array Observatory (SKAO), Padre David Brown SJ, Padre Gabriele Gionti SJ, Padre George V. Coyne SJ - Direttore della Specola Vaticana (1978 - 2006), Padre Josè Gabriel Funes SJ, Pianeti del Sistema Solare/Planets of the Solar System, Pianeti Extrasolari/Extrasolar Planets, Progetto SETI/SETI Project, Sonde Interplanetarie/Interplanetary Probes, Specola Vaticana/Vatican Observatory, Storia dell'Astrofisica/History of Astrophysics, Telescopi Spaziali/Space Telescopes, Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope (EHT), Telescopio Sferico con Apertura di Cinquecento Metri/Five Hundred Meter Aperture Spherical Telescope (FAST), Telescopio Spaziale James Webb/James Webb Space Telescope, Unione Astronomica Internazionale/International Astronomical Union (IAU), Vita Extraterrestre/Extraterrestrial Life, Vita intelligente Extraterrestre/Extraterrestrial intelligent Life

Origen: Futuro24: captare le onde radio per svelare i misteri dell’Universo

Is Our Galaxy a Rebel?

Astrofisica/Astrophysics, Astronomi Gesuiti/Jesuit Astronomers, Astronomia/Astronomy, Brother Guy Joseph Consolmagno SJ, Città del Vaticano/Vatican City, Collaborazione Specola Vaticana/Vatican Observatory Collaboration, Compagnia di Gesù/Society of Jesus, Consorzio del Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (EHTC), Father David Brown SJ, Father Gabriele Gionti SJ, Father George V. Coyne SJ - Director of the Vatican Observatory (1978 - 2006), Father Josè Gabriel Funes SJ, Fisica/Physics, Fratello Guy Joseph Consolmagno SJ, Geologia/Geology, Gesuiti/Jesuits, Grande Schieramento Millimetrico di Antenne Radio in Atacama/Atacama Large Millimeter Array (ALMA), Intelligenza Artificiale/Artificial Intelligence, Matematica/Mathematics, Oggetti Volanti Non Identificati (OVNI)/Unidentified Flying Objects (UFO), Osservatori Astronomici Australiani/Australian Astronomical Observatories, Osservatori Astronomici/Astronomical Observatories, Osservatorio Australe Europeo (ESO)/European Southern Observatory (ESO), Osservatorio di Antenne Radio di un Chilometro Quadrato/Square Kilometre Array Observatory (SKAO), Padre David Brown SJ, Padre Gabriele Gionti SJ, Padre George V. Coyne SJ - Direttore della Specola Vaticana (1978 - 2006), Padre Josè Gabriel Funes SJ, Pianeti del Sistema Solare/Planets of the Solar System, Pianeti Extrasolari/Extrasolar Planets, Progetto SETI/SETI Project, Sonde Interplanetarie/Interplanetary Probes, Specola Vaticana/Vatican Observatory, Storia dell'Astrofisica/History of Astrophysics, Telescopi Spaziali/Space Telescopes, Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope (EHT), Telescopio Sferico con Apertura di Cinquecento Metri/Five Hundred Meter Aperture Spherical Telescope (FAST), Telescopio Spaziale James Webb/James Webb Space Telescope, Unione Astronomica Internazionale/International Astronomical Union (IAU), Vita Extraterrestre/Extraterrestrial Life, Vita intelligente Extraterrestre/Extraterrestrial intelligent Life
avatar

20 settembre 2017

Dr. Brenda Frye

Siamo particolarmente affezionati alla Via Lattea perché è la casa del Sole e della Terra (così come altri 100 miliardi di altre stelle e ancora più pianeti).

La Via Lattea costituisce la pietra angolare su cui basiamo la nostra comprensione di come le altre galassie potrebbero lavorare in dettaglio. La domanda è: può la Via Lattea essere descritta come una tipica galassia a spirale?

Ci sono alcuni segnali che la Via Lattea potrebbe essere un po ‘diversa dai suoi vicini. Un indizio viene dal guardare i centri della galassia. Tutte le massicce galassie a spirale come la Via Lattea ospitano giganteschi buchi neri, tranne che per la Via Lattea questo buco nero supermassiccio centrale è più piccolo.

Un altro indizio viene da un’indagine sui dintorni delle galassie a spirale. La Via Lattea ha dozzine di galassie molto piccole nelle immediate vicinanze che chiamiamo satelliti. Molti di questi satelliti sono stati scoperti solo molto recentemente perché sono molto deboli a causa del fatto che in essi ci sono poche nuove stelle. Allo stesso tempo, altre galassie a spirale vicine hanno satelliti che sostengono tassi molto più alti di formazione stellare.

È in corso una nuova indagine per aumentare la nostra comprensione di queste differenze, denominata sondaggio Satellites Around Galactic Analogs (SAGA) condotto da un team della Yale University.

Imparare a conoscere le differenze tra la Via Lattea e altre galassie, se ce ne sono, può aiutarci a capire meglio il nostro posto nell’universo.

IAU Executive Committee meets at Vatican Observatory

Astrofisica/Astrophysics, Astronomi Gesuiti/Jesuit Astronomers, Astronomia/Astronomy, Brother Guy Joseph Consolmagno SJ, Città del Vaticano/Vatican City, Collaborazione Specola Vaticana/Vatican Observatory Collaboration, Compagnia di Gesù/Society of Jesus, Consorzio del Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope Consortium (EHTC), Father David Brown SJ, Father Gabriele Gionti SJ, Father George V. Coyne SJ - Director of the Vatican Observatory (1978 - 2006), Father Josè Gabriel Funes SJ, Fisica/Physics, Fratello Guy Joseph Consolmagno SJ, Geologia/Geology, Gesuiti/Jesuits, Grande Schieramento Millimetrico di Antenne Radio in Atacama/Atacama Large Millimeter Array (ALMA), Intelligenza Artificiale/Artificial Intelligence, Matematica/Mathematics, Oggetti Volanti Non Identificati (OVNI)/Unidentified Flying Objects (UFO), Osservatori Astronomici Australiani/Australian Astronomical Observatories, Osservatori Astronomici/Astronomical Observatories, Osservatorio Australe Europeo (ESO)/European Southern Observatory (ESO), Osservatorio di Antenne Radio di un Chilometro Quadrato/Square Kilometre Array Observatory (SKAO), Padre David Brown SJ, Padre Gabriele Gionti SJ, Padre George V. Coyne SJ - Direttore della Specola Vaticana (1978 - 2006), Padre Josè Gabriel Funes SJ, Pianeti del Sistema Solare/Planets of the Solar System, Pianeti Extrasolari/Extrasolar Planets, Progetto SETI/SETI Project, Sonde Interplanetarie/Interplanetary Probes, Specola Vaticana/Vatican Observatory, Storia dell'Astrofisica/History of Astrophysics, Telescopi Spaziali/Space Telescopes, Telescopio dell'Orizzonte degli Eventi/Event Horizon Telescope (EHT), Telescopio Sferico con Apertura di Cinquecento Metri/Five Hundred Meter Aperture Spherical Telescope (FAST), Telescopio Spaziale James Webb/James Webb Space Telescope, Unione Astronomica Internazionale/International Astronomical Union (IAU), Vita Extraterrestre/Extraterrestrial Life, Vita intelligente Extraterrestre/Extraterrestrial intelligent Life
avatar

17 maggio 2019

Robert Macke

Scritto da p. Peter Lah, SJ

Il comitato esecutivo della International Astronomical Union (IAU) ha visitato l’Osservatorio Vaticano (Specola Vaticana) il 15 maggio 2019. Il gruppo di 23 membri comprendeva membri del comitato esecutivo (13), presidenti di divisione (8) e due membri del personale di segreteria generale. Hanno tenuto tre sessioni di lavoro nei locali della Specola, seguito dal tour della mostra permanente nelle cupole del telescopio di Villa Barberini. La visita si è conclusa con una cena in cui loro e i loro coniugi sono stati accolti dai membri della comunità dei gesuiti.

Comitato esecutivo IAU, accompagnato da alcuni gesuiti dall’Osservatorio Vaticano, visitando le nostre cupole telescopiche nelle Ville Pontificie. (Foto di Peter Lah SJ)

Lunedì 13 maggio, il comitato esecutivo della IAU si è riunito all’Accademia dei Lincei a Roma. Fr. Paul Mueller, vice direttore della Specola, ha tenuto un discorso sulla storia del rapporto dell’Osservatorio Vaticano con l’Unione. L’Accademia dei Lincei è il luogo della prima Assemblea Generale della IAU nel 1922, durante la quale i partecipanti hanno anche visitato l’Osservatorio Vaticano nella sua posizione nella Città del Vaticano. 
L’ottava Assemblea Generale della IAU si riunì anche a Roma, nel settembre del 1952. In quell’occasione furono ricevuti da Papa Pio XII nella residenza estiva di Castel Gandolfo. Questa visita fu accompagnata da un’altra visita all’Osservatorio, che si era trasferito in quella località nel 1935.
L’Unione Astronomica Internazionale è stata fondata nel 1919. Ripercorre le sue radici al primo progetto multinazionale in astronomia, chiamato il progetto “Carte du Ciel” che ha prodotto una mappa fotografica completa del cielo. Durante la loro ultima visita, i visitatori della IAU erano entusiasti di vedere il telescopio originale che è stato recentemente restaurato. 
L’Osservatorio Vaticano era un partner del progetto Carte du Ciel. I suoi astronomi – padri gesuiti, suore religiose e laici – hanno dedicato decenni di ricerche ad esso. Le lastre fotografiche originali sono attualmente digitalizzate e analizzate dal suo astronomo personale, don Alessandro Omizzolo.